

MINISCALE PLUS

Technische Informationen

Montageanleitung

Seitenzahl

1		Sicherheitshinweise	5
	1.1	Gültigkeitsbereich	
	1.2	Autorisiertes Personal	5
	1.3	Bestimmungsgemässe Verwendung	
	1.4	Umweltschutz	5
	1.5	Transport	
2		Gestaltung der Anschlusskonstruktion	6
	2.1	Allgemeines	6
	2.2	Oberflächengüte	6
	2.3	Ebenheit der Montageflächen	6
	2.4	Anschlaghöhen und Eckradien	7
	2.5	Einbauarten	7
3		Montage- und Einstellrichtlinien der Führung	9
	3.1	Vorbereitung zur Montage	g
	3.2	Montage der Schiene	10
	3.3	Reinigung der Massverkörperung	11
	3.4	Schmierung	11
	3.5	MINISCALE PLUS Wagen von oder auf die Schiene fahren	11
		Mantanavialettinian fün des Massaustans	10
4		Montagerichtlinien für das Messsystem	12
4	4.1	ESD Schutz	12
4	4.1 4.2		
4		ESD Schutz	12
4	4.2	Übersicht der relevanten Komponenten	12 12
4	4.2 4.3	Übersicht der relevanten Komponenten Paarung Schnittstellenmodul und Führung	12 12 13
4	4.2 4.3 4.4	Übersicht der relevanten Komponenten Paarung Schnittstellenmodul und Führung Montagemöglichkeiten Schnittstellenmodul	12 12 13
4	4.2 4.3 4.4 4.5	Übersicht der relevanten Komponenten Paarung Schnittstellenmodul und Führung Montagemöglichkeiten Schnittstellenmodul Anschliessen des flexiblen Sensorprints an das Schnittstellenmodul	12 12 13 14 15
5	4.2 4.3 4.4 4.5 4.6	Übersicht der relevanten Komponenten Paarung Schnittstellenmodul und Führung Montagemöglichkeiten Schnittstellenmodul Anschliessen des flexiblen Sensorprints an das Schnittstellenmodul Montage Verlängerung (FFC Kabel)	12 12 13 14 15
5	4.2 4.3 4.4 4.5 4.6	Übersicht der relevanten Komponenten Paarung Schnittstellenmodul und Führung Montagemöglichkeiten Schnittstellenmodul Anschliessen des flexiblen Sensorprints an das Schnittstellenmodul Montage Verlängerung (FFC Kabel) Anschliessen eines kundenseitigen Kabels	12 13 14 15 16
5	4.2 4.3 4.4 4.5 4.6 4.7	Übersicht der relevanten Komponenten Paarung Schnittstellenmodul und Führung Montagemöglichkeiten Schnittstellenmodul Anschliessen des flexiblen Sensorprints an das Schnittstellenmodul Montage Verlängerung (FFC Kabel) Anschliessen eines kundenseitigen Kabels Inbetriebnahme	12 13 14 15 16 19
5	4.2 4.3 4.4 4.5 4.6 4.7	Übersicht der relevanten Komponenten Paarung Schnittstellenmodul und Führung Montagemöglichkeiten Schnittstellenmodul Anschliessen des flexiblen Sensorprints an das Schnittstellenmodul Montage Verlängerung (FFC Kabel) Anschliessen eines kundenseitigen Kabels Inbetriebnahme Signalübertragung	12 13 14 15 16 19 20
5	4.2 4.3 4.4 4.5 4.6 4.7 5.1 5.2	Übersicht der relevanten Komponenten Paarung Schnittstellenmodul und Führung Montagemöglichkeiten Schnittstellenmodul Anschliessen des flexiblen Sensorprints an das Schnittstellenmodul Montage Verlängerung (FFC Kabel) Anschliessen eines kundenseitigen Kabels Inbetriebnahme Signalübertragung Kontaktbelegung	12 13 14 15 16 20 20 21
5	4.2 4.3 4.4 4.5 4.6 4.7 5.1 5.2 5.3	Übersicht der relevanten Komponenten Paarung Schnittstellenmodul und Führung Montagemöglichkeiten Schnittstellenmodul Anschliessen des flexiblen Sensorprints an das Schnittstellenmodul Montage Verlängerung (FFC Kabel) Anschliessen eines kundenseitigen Kabels Inbetriebnahme Signalübertragung Kontaktbelegung Steuerung	12 13 14 15 16 19 20 20 21 22
5	4.2 4.3 4.4 4.5 4.6 4.7 5.1 5.2 5.3	Übersicht der relevanten Komponenten Paarung Schnittstellenmodul und Führung Montagemöglichkeiten Schnittstellenmodul Anschliessen des flexiblen Sensorprints an das Schnittstellenmodul Montage Verlängerung (FFC Kabel) Anschliessen eines kundenseitigen Kabels Inbetriebnahme Signalübertragung Kontaktbelegung Steuerung Funktionsprüfung	12 13 14 15 16 19 20 20 21 22 23
5	4.2 4.3 4.4 4.5 4.6 4.7 5.1 5.2 5.3 5.4	Übersicht der relevanten Komponenten Paarung Schnittstellenmodul und Führung Montagemöglichkeiten Schnittstellenmodul Anschliessen des flexiblen Sensorprints an das Schnittstellenmodul Montage Verlängerung (FFC Kabel) Anschliessen eines kundenseitigen Kabels Inbetriebnahme Signalübertragung Kontaktbelegung Steuerung Funktionsprüfung Technische Grundlagen	12 13 14 15 16 19 20 20 20 21 22 23
5	4.2 4.3 4.4 4.5 4.6 4.7 5.1 5.2 5.3 5.4	Übersicht der relevanten Komponenten Paarung Schnittstellenmodul und Führung Montagemöglichkeiten Schnittstellenmodul Anschliessen des flexiblen Sensorprints an das Schnittstellenmodul Montage Verlängerung (FFC Kabel) Anschliessen eines kundenseitigen Kabels Inbetriebnahme Signalübertragung Kontaktbelegung Steuerung Funktionsprüfung Technische Grundlagen Leistungsparameter von MINISCALE PLUS	12 13 14 15 16 19 20 20 21 22 23
5	4.2 4.3 4.4 4.5 4.6 4.7 5.1 5.2 5.3 5.4 6.1 6.2	Übersicht der relevanten Komponenten Paarung Schnittstellenmodul und Führung Montagemöglichkeiten Schnittstellenmodul Anschliessen des flexiblen Sensorprints an das Schnittstellenmodul Montage Verlängerung (FFC Kabel) Anschliessen eines kundenseitigen Kabels Inbetriebnahme Signalübertragung Kontaktbelegung Steuerung Funktionsprüfung Technische Grundlagen Leistungsparameter von MINISCALE PLUS Systemgenauigkeit	12 13 14 15 16 19 20 20 21 22 23 24 24

Inhaltsverzeichnis

Seitenzahl

7	Begriffserklärung	28
7.1	Schnittstellenmodul	28
7.2	Genauigkeitsklasse	29
7.3	Wiederholbarkeit	29
7.4	Referenzieren	29
7.5	Periodische Abweichung	29
7.6	Komparator Fehler	30
7.7	Abtastrate	30
7.8	Massbezogene Signalübertragung	30
7.9	Differentielle Signalübertragung	30
7.10	Fahrtrichtung	30
8	Applikationshinweise	31
8.1	Einsatzbedingungen für das MINISCALE PLUS Messsystem	31
8.2	Verhalten des MINISCALE PLUS bezüglich EMV	31
8.3	Magnetismus und MINISCALE PLUS	31
9	Fehlerbehebung	32
9.1	Abgleich des digitalen Schnittstellenmoduls	32
9.2	Fehlerbeschreibung	33

SCHNEEBERGER

1.1 Gültigkeitsbereich

Diese Anleitung beschreibt die Montage von MINISCALE PLUS Führungen mit integriertem Messsystem.

Ergänzende Literatur: MINI-X Produktkatalog

1.2 Autorisiertes Personal

MINISCALE PLUS Führungen dürfen nur von Fachpersonal montiert werden, welches diese Anleitung gelesen und verstanden hat.

1.3 Bestimmungsgemässe Verwendung

Sicherheitshinweise

MINISCALE PLUS Führungen dürfen ausschliesslich den zugelassenen Umgebungseinflüssen ausgesetzt werden (siehe Produktkatalog).

- Vor Arbeiten an der elektrischen Anlage ist die Spannungsversorgung zu unterbrechen und sicher zu stellen, dass diese nicht unbeabsichtigt wiederhergestellt werden kann.
- Länderspezifische Vorschriften, Normen und Richtlinien zur Unfallverhütung müssen beachtet werden.

- MINISCALE PLUS ist ESD empfindlich! Bei Nichtbeachten der ESD Bestimmungen kann die Elektronik zerstört werden; es sind die Vorschriften bei der Handhabung ESD-gefährdeter Bauelemente zu beachten (EN 100015-1).
- Die Produkte nicht im Freien lagern und vor Feuchtigkeit schützen (10 % 70 % rel. Luftfeuchtigkeit, nicht kondensierend).
- Temperaturbereich beachten (-40 °C bis +80 °C)
- Die Produkte erst am Montageplatz und unmittelbar vor der Montage aus der Originalverpackung entnehmen.
- Die Produkte sind ab Werk geschmiert. Der Zustand der Schmierung ist zu kontrollieren (die Lebensdauer der Schmierung ist beschränkt).

Die unsachgemässe Handhabung der Führungen kann zu Vorschädigungen und damit zu einem vorzeitigen Ausfall führen.

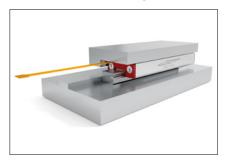
1.4 Umweltschutz

- Schmiermittel sind umweltgerecht zu entsorgen.
- Ausgemusterte Komponenten sind entsprechend regionalen/nationalen Gesetzen und Richtlinien zu entsorgen.

1.5 Transport

MINISCALE PLUS sind hochpräzise Bauteile und deshalb schonend zu behandeln. Beim innerbetrieblichen Transport dieser Produkte sind daher folgende Punkte zu beachten:

- Führungen und Zubehör in der Originalverpackung transportieren
- Führungen vor Stössen schützen


A

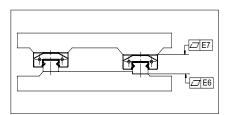
2.1 Allgemeines

MINISCALE PLUS Führungen sind hochpräzise Bauteile. Entsprechend hoch sind die Anforderungen an die Anschlusskonstruktion, damit Ungenauigkeiten nicht auf die Führungen übertragen werden.

Auf einer steifen Konstruktion mit grosser Formgenauigkeit kommen die Vorteile von MINISCALE PLUS am besten zur Geltung. Ungenauigkeiten der Anbauflächen beeinflussen die Gesamtgenauigkeit, das Laufverhalten, die Verschiebekraft und die Lebensdauer der Führungen negativ. Labile Anschlussflächen steigern die internen Zwangskräfte der Führungen, was ebenfalls die Lebensdauer negativ beeinflusst. Anschlusskonstruktionen aus Leichtmetall eignen sich deshalb, aufgrund der geringeren Steifigkeit und der eingeschränkten Bearbeitungsgenauigkeit, nur bedingt für hochgenaue Anwendungen.

2.2 Oberflächengüte

Gestaltung der Anschlusskonstruktion


Die Oberflächengüte der Aufspannfläche hat keinen direkten Einfluss auf die Funktion und das Ablaufverhalten der Führung, jedoch auf die statische Genauigkeit. Führungswagen und Führungsschienen werden durch die Schraubenverbindungen mit hoher Kraft an die Montageflächen gepresst. Um ein Setzverhalten der Verbindung zu verhindern, ist ein hoher Traganteil der Oberflächen erforderlich. Dies wird durch eine hohe Oberflächengüte erreicht.

Die Genauigkeit der Applikation bestimmt massgeblich die geforderte Oberflächengüte der Auflage- und Anschlagflächen. Es gilt deshalb folgende Werte einzuhalten:

Hochgenaue Anwendungen max. Ra-Wert von 0.4 Standardanwendungen max. Ra-Wert von 1.6

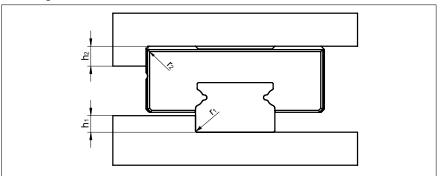
2.3 Ebenheit der Montageflächen

Für die Ebenheit der Auflagen (E6 und E7) sollten die folgenden Werte der unten stehenden Tabelle angestrebt werden:

Ebenheit der Montageflächen

Baugrösse	Ebenheit (in µm)
_ 7	2
9	3
12	
15	
14	4
18	
24	-
42	5

SCHNEEBERGER



2.4 Anschlaghöhen und Eckradien

Die Einhaltung der nachfolgenden Höhenangaben für die Anschlagflächen garantiert eine sichere Kraftaufnahme und genügend Freiraum für die Führungswagen. Die Führungswagen und Führungsschienen besitzen an den Kanten der Anschlagflächen eine Fase. Die in der nachfolgenden Tabelle angegebenen Eckenradien sind Maximalwerte, die sicherstellen, dass Führungswagen und Führungsschienen korrekt an den Montageflächen anliegen.

Die Anschlagseite des Wagens liegt gegenüber der Wagenseite mit dem Firmenlogo/Typenbezeichnung. Die Schiene kann beidseitig angeschlagen werden.

Die aufgeführten Abmessungen für die Anschlagflächen sollen möglichst ausgenutzt werden, um eine optimale Ausrichtung der Führung und eine einfache Montage zu ermöglichen.

Anschlaghöhen und Eckradien

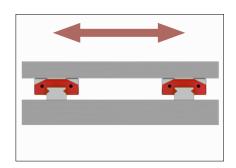
Schienenbreite	h ₁	r _{1max}	r _{2max}	h ₂
7	1.2	0.2	0.3	2.5
9	1.5	0.3	0.4	3
12	2.5	0.4	0.4	4
15	3.5	0.5	0.5	5
14	1.8	0.2	0.4	2
18	3	0.3	0.5	3
24	3.5	0.4	0.5	4
42	3.5	0.5	0.6	5

2.5 Einbauarten

Bei der Auswahl einer geeigneten Einbauart und Festlegung von Anzahl und Anordnung der seitlichen Anschlagflächen muss die Belastungsrichtung und der Montageaufwand berücksichtigt werden.

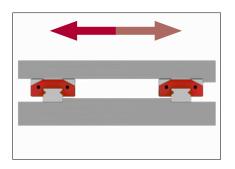
2.5.1 Belastung

Kräfte in Zug- und Druckrichtung haben keinen Einfluss auf die seitlichen Anschlagflächen. Treten Belastungen von der Seite auf, welche die zulässige Seitenkraft überschreiten, müssen Anschläge und gegebenenfalls seitliche Fixierungen vorgesehen werden. Anzahl und Lage richten sich hierbei nach den auftretenden Kräften.

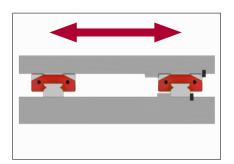

Die Anschlagflächen sollten gemäss dem Kraftfluss der Hauptbelastung angeordnet werden. Seitliche Anschläge sollten auch beim Auftreten von Schwingungen und Stössen vorgesehen werden. Ausserdem erhöhen sie die Steifigkeit des Systems.

2.5.2 Montageaufwand

Anschlagflächen erleichtern die Montage und reduzieren den Aufwand für das Ausrichten der Führungsschienen. Bei sorgfältigem manuellem Ausrichten der Führung kann auf seitliche Anschlagflächen verzichtet werden. Bei der Entscheidung für eine Methode ist der Montageaufwand gegenüber dem konstruktiven und fertigungstechnischen Aufwand abzuwägen.


2.5.3 Einbauvarianten

Nachfolgend werden einige typische Einbauarten beschrieben, die sich in Anzahl und Lage der Anschlagflächen, den übertragbaren Seitenkräften und dem Montageaufwand unterscheiden und als Konstruktionshilfe dienen sollen.


Einbauvariante Variante 1

- · Keine Anschlagflächen
- Die Kräfte werden durch Reibschluss übertragen
- Hoher Montageaufwand

Einbauvariante Variante 2

- Beide Führungsschienen mit einem Anschlag. Eine Führungswagenseite mit gegenüberliegendem Anschlag
- · Einfache Montage
- Hohe Seitenkraftaufnahme aus einer Richtung z.Bsp. für hängenden Einbau

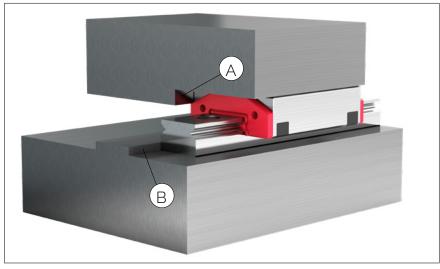
Einbauvariante Variante 3

- Eine Führungsschiene und deren Führungswagen mit Anschlag und Seitenfixierung
- Für hohe Seitenkräfte aus beiden Richtungen (eine Führungsschiene mit Führungswagen nimmt den Großteil der Seitenkräfte auf)
- Relativ einfache Montage

3.1 Vorbereitung zur Montage

3.1.1 Benötigte Werkzeuge und Hilfsmittel

- Befestigungsschrauben
- Drehmomentschlüssel
- ESD Schutzausrüstung
- Ölsteir
- Reinigungshilfsmittel


3.1.2 Anschlagflächen vorbereiten

- Anschlagflächen von Maschinenbett und Montageplatte auf Form- und Lagegenauigkeit prüfen
- Alle Anschlagflächen gründlich reinigen. Grate und Unebenheiten mit einem Ölstein entfernen
- Reinigung der Anschlag- und Auflageflächen von Schienen und Wagen mit einem sauberen Tuch
- · Anschlag- und Auflageflächen leicht ölen

Für die Reinigung Testbenzin oder Spiritus verwenden. Keinen Nitroverdünner oder Aceton verwenden, da diese das Messsystem angreifen können.

Keine Pressluft verwenden!

Anschlagflächen

A Anschlag an der Montageplatte für den Wagen

B Anschlag am Maschinenbett für die Schiene (es können beide Seiten der Schiene als Anschlagflächen benutzt werden)

3.2 Montage der Schiene

- Bei Montagebeginn müssen Führung, Maschinenbett, Montageplatte und Befestigungsschrauben dieselbe Raumtemperatur aufweisen.
- Der MINISCALE PLUS Sensor ist ein elektrostatisch gefährdetes Bauteil und wird deshalb in einer ESD-Schutzverpackung geliefert. Während der Montage der MINISCALE PLUS Führung sollte die ESD Schutzverpackung nicht entfernt werden, damit der Sensor geschützt bleibt.
- Befestigungsschrauben immer mit einem Drehmomentschlüssel anziehen. Anziehdrehmomente siehe Kapitel 3.2.1.
- Bei längeren Schienen Befestigungsschrauben wechselseitig von der Schienenmitte aus festziehen.
- Die Führung immer mit ihrer Anschlagfläche gegen die Anschlagfläche des Maschinenbetts spannen. Die Schiene kann beidseitig angeschlagen werden, die Anschlagseite des Wagens liegt gegenüber der Wagenseite mit dem Firmenlogo/Typenbezeichnung.
- Die Schrauben können durch die Öffnung im Wagen eingeführt und angezogen werden.

3.2.1 Anziehdrehmomente für die Befestigungsschraube

Die empfohlenen Anziehdrehmomente sind der Tabelle zu entnehmen. Diese Werte gelten für geölte Schrauben.

Bei Verwendung von MoS2-haltigen Fetten kann der Reibungskoeffizient μ bis auf die Hälfte absinken. Die Drehmomente sind entsprechend um die Hälfte zu reduzieren.

Nachfolgende Tabelle zeigt die Anziehdrehmomente für die Befestigungsschrauben der Festigkeitsklasse 12.9 (Reibungskoeffizient 0.125) und der Festigkeitsklasse A2-70 (Reibungskoeffizient 0.2) nach DIN 912:

Cavidadasuäasa	Anziehdrehmoment in Ncm		
Gewindegrösse	Festigkeitsklasse 12.9	Festigkeitsklasse A2-70	
M1.6	28	20	
M2	60	30	
M3	210	110	
M4	500	260	

3.3 Reinigung der Massverkörperung

Auf der Oberseite der MINISCALE PLUS Schiene befindet sich die Massverkörperung des Messsystems. Nach dem Befestigen der Schiene und bevor der Wagen aufgefahren wird, muss die Massverkörperung gereinigt werden, damit diese sauber und für den Sensor lesbar ist. Schmiermittel, Fingerabdrücke und andere Schmutzreste müssen entfernt werden.

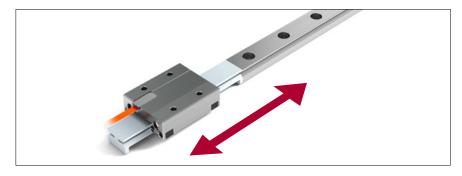
Für die Reinigung sollte ein sauberer und fuselfreier Lappen verwendet werden. Als Reinigungsflüssigkeit eignet sich Testbenzin oder Spiritus. Wischen Sie mit einem getränkten Lappen über die Massverkörperung auf der Oberfläche der Schienen. Bei grosser Verschmutzung die Reinigung mehrmals nacheinander mit einem sauberen Lappen wiederholen.

3.4 Schmierung

MINISCALE PLUS sind ab Werk geschmiert. Die Systeme werden einbaufertig geliefert. Es bedarf keiner zusätzlichen Schmierung oder Reinigung. Die Laufbahnen dürfen bei der Montage nicht entfettet werden.

3.4.1 Nachschmierintervalle von MINISCALE PLUS

Die Nachschmierintervalle hängen von verschiedenen Einflussgrössen ab, wie z.B. der Belastung, Umgebung, Geschwindigkeiten etc. und sind deshalb nicht errechenbar. Somit ist die Schmierstelle über einen längeren Zeitraum zu beobachten.

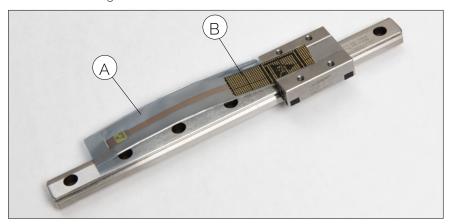

Die erste, werkseitig aufgebrachte Schmierung kann, je nach Beanspruchung, mehrere Jahre reichen.

Beim Nachschmieren darf nur das Originalfett verwendet werden. Schmiermittel über die Laufbahnen auftragen. Schmiermittelmengen gering halten, da ein Überschmieren den Ausfall des optischen Sensors verursachen kann.

3.5 MINISCALE PLUS Wagen von oder auf die Schiene fahren

Benutzen Sie die mitgelieferte Plastik-Schutzschiene. Die schützt den Wagen vor Verschmutzung und verhindert beim Auffahren auf die Führungsschiene ein Verkanten und folglich ein herausfallen der Kugeln.

Die Plastik-Schutzschiene bündig an die Führungsschiene legen und mit dem MINIRAIL oder MINISCALE PLUS Wagen verfahren.

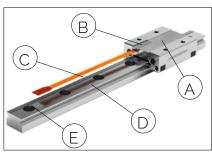

Beim MINISCALE PLUS Wagen sicherstellen, dass dessen Sensor über der Massverkörperung der Schiene liegt!

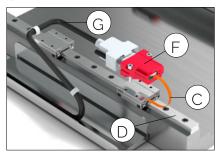
4.1 ESD Schutz

Der optische Sensor von MINISCALE PLUS ist ein elektrostatisch gefährdetes Bauteil und wird deshalb in einer ESD-Schutzverpackung geliefert. (Electro Static Discharge).

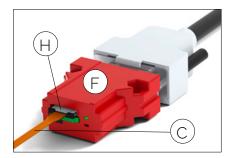
Sobald das System aus der Schutzverpackung entfernt wird, muss der Anschluss des flexiblen Sensorprints jederzeit gegen elektrostatische Felder und Entladungen geschützt werden. Ist MINISCALE PLUS montiert und in der Anwendung angeschlossen, ist es vor ESD geschützt.

MINISCALE PLUS mit ESD Schutz A ESD Schutzverpackung B Leitender Klebstreifen




Diese Montageanleitung ersetzt keine ESD Schulung, sondern gibt lediglich einen Überblick wie mit MINISCALE PLUS verfahren werden muss.

Um MINISCALE PLUS Führungen zu montieren, wird wenigstens ein ESD Handgelenkband mit Erdungskabel bzw. Krokodilklemme zur Erdung am Maschinenbett benötigt.


Solange sich der flexible Sensorprint von MINISCALE PLUS in der ESD-Schutzverpackung befindet, ist kein ESD Schutz bzw. kein Handgelenkband nötig.

4.2 Übersicht der relevanten Komponenten

- **A** Wagen
- B Optischer Sensor C Flexible Leiterpla
 - Flexible Leiterplatte (darf nicht dynamisch belastet werden)
- D Schiene

- E Massverkörperung auf der Schiene
 F Schnittstellenmodul mit D-Sub 9
 Stecker
- **G** Steuerungskabel (kundenseitig)
- d ZIF Stecker

4.3 Paarung Schnittstellenmodul und Führung

Sowohl Schienen als auch Wagen der MINISCALE PLUS Führungen sind mit Seriennummern beschriftet. Die Nummer befindet sich beim SCHNEEBERGER Logo.

Seriennummer auf dem Wagen

Seriennummer auf der Schiene

Die Schnittstellenmodule werden werkseitig konfiguriert und zusammen mit den dazugehörigen MINISCALE PLUS Führungen abgeglichen.

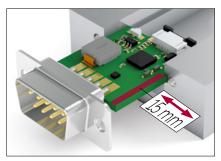
Wichtig!

Führung mit Sensor und Schnittstellenmodul werden als Satz bzw. System geliefert und müssen als solches verbaut werden.

Auf dem Label des Schnittstellenmoduls ist die Seriennummer des Wagens aufgeführt. Das Label ist auf dem Gehäuse oder der Verpackung der Schnittstellenmodule aufgebracht.

Auf dem Label des Schnittstellenmoduls ist die Wagennummer aufgedruckt.

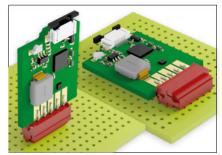
4.4 Montagemöglichkeiten Schnittstellenmodul



Gestapelte Schnittstellenmodule

Schnittstellenmodul mit Gehäuse und mit D-Sub 9 Stecker

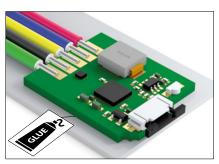
Vorteile


- Einfach Anzuschrauben mit M3 Schrauben
- Möglichkeit zum Stapeln
- Standard Industriestecker (D-Sub 9) für Anschluss kundenseitig

Einschub des Schnittstellenmoduls in die Anschlusskonstruktion

Schnittstellenmodul ohne Gehäuse und mit D-Sub 9 Stecker Vorteile:

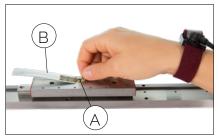
- Board kann seitlich geklemmt oder geführt werden (Platz auf Seite des Boards für Einschub = 1.5 mm)
- · Platzbedarf kleiner, da ohne Gehäuse
- · Standard Industriestecker (D-Sub 9) für Anschluss kundenseitig


Schnittstellenmodul stehend oder liegend auf Elektronikboard aufsteckbar

Schnittstellenmodul ohne Gehäuse und mit Micro Match Stecker Vorteile:

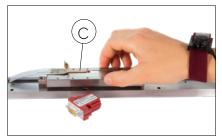
Board kann auf eine kundenseitige Elektronik aufgesteckt werden mit dem entsprechenden Micro Match Gegenstecker

Achtung: Board muss zusätzlich gegen Vibration gesichert werden.



Kabel direkt an Schnittstellenmodul angelötet Modul mit Silikonkleber befestigt

Schnittstellenmodul ohne Gehäuse und ohne Stecker mit Lötanschlüssen Vorteile:


- Board kann seitlich geklemmt, geführt oder mit einer elektrisch isolierenden Vergussmasse befestigt werden
- · Platzbedarf kleiner, da ohne Gehäuse und ohne Stecker
- Kabel kann direkt angelötet werden
- Grosse Flexibilität bezüglich Anschlussgestaltung

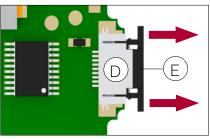
4.5 Anschliessen des flexiblen Sensorprints an das Schnittstellenmodul

Entfernen des ESD Schutzbeutels nur mit persönlicher ESD Ausrüstung (z.B. Handgelenk-

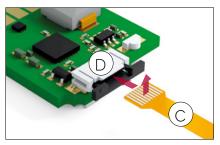
Während der Montage der Schiene sollte die ESD Schutzverpackung nicht entfernt werden, damit der Sensor geschützt bleibt. Die Schutzverpackung darf nur entfernt werden, wenn MINISCALE PLUS über das Maschinenbett geerdet und die Person entsprechend ESD geschützt ist (z.B. mit geerdetem Handgelenkband).

ESD Schutzverpackung entfernen

Klebestreifen A und ESD Schutzverpackung B entfernen


Der flexible Sensorprint C darf beim Entfernen der Schutzverpackung nicht beschädigt werden.

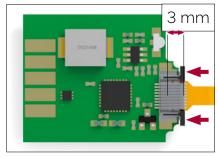
Wichtig!


Der flexible Sensorprint wird über einen ZIF-Verbinder (Zero Insertion Force) an das Schnittstellenmodul angeschlossen.

Das Einstecken benötigt keinen Kraftaufwand. Bei zu viel Zug am ZIF-Verbinder, kann der Verriegelungsmechanismus brechen. Bei zu viel Druck auf den Sensorprint, kann dieser knicken und die Leiterbahnen beschädigen.

ZIF-Verbinder öffnen

Beim Schnittstellenmodul den ZIF-Verbinder D öffnen. Dazu die schwarze Lasche E an den Enden fassen und 1 mm herausziehen.



Kontaktflächen des flexiblen Sensorprints müssen von der Printplatte abgewandt sein

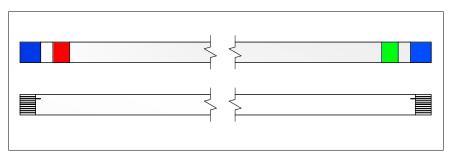
Ohne Druck den flexiblen Sensorprint Crund 3 mm in den ZIF-Verbinder D einführen.

Beachten Sie dabei, dass sich die Kontaktflächen des flexiblen Sensorprints auf der oberen Seite befinden (von der Printplatte abgewandt), damit Kontakt besteht.

Flexibler Sensorprint rund 3mm in den ZIF-Verbinder einführen. Lasche anschliessend zurückschieben

Wenn der flexible Sensorprint eingeführt ist, den ZIF-Verbinder wieder verriegeln, indem die schwarze Lasche in Richtung Printplatte geschoben wird.

Wichtig!


Der flexible Sensorprint zwischen Sensor und Schnittstellenmodul darf nur statisch verwendet werden. Der Biegeradius des flexiblen Sensorprints darf 2 mm nicht unterschreiten.

Bei gewaltsamem Ausreissen kann der Sensorprint beschädigt werden.

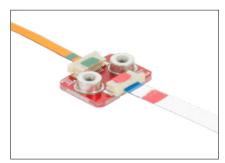
(Die Haltekraft des ZIF-Verbinders beträgt nur wenige Newton)

4.6 Montage Verlängerung (FFC Kabel)

Das FFC (Flat Flex Cable) ist geschirmt. Der Schirm besteht aus einer metallisierten Folie, welche an Pin 2 (GND) angeschlossen ist. Daher muss das Verlängerungskabel mit der richtigen Orientierung am Adapterboard und am Schnittstellenmodul angeschlossen werden. Achten Sie dazu auf die Farbcodierung. Die Metallisierung des Schirms ist gegen aussen mit einer Isolationsschicht versehen, um Kurzschlüsse mit anderen Maschinenteilen zu vermeiden.

FFC Verlängerungskabel (Ansicht von oben und von unten)

MINISLIDE MSQscale mit FFC-Verlängerung



Adapter Board mit Sensorprint und Verlängerung

4.6.1 Farbcodierung

Um Verwechslungen und Fehler beim Verbinden der einzelnen Komponenten zu vermeiden, tragen diese spezielle Farbcodierungen. Beim Einstecken des Kabels muss an Kabelende und Stecker die gleiche Farbe sichtbar sein.

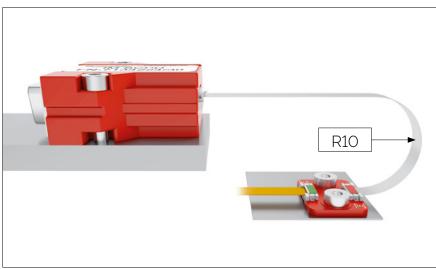
SCHNEEBERGER

Adapter Board mit Sensorprint und Verlängerung

4.6.2 Einsetzen und Verriegeln des Kabels

Beim Einsetzen der Kabel in die ZIF-Verbinder ist auf die Kombination der Farbmarkierungen zu achten. Das grüne Kabelende kommt in den grünen ZIF-Verbinder. Das rote Kabelende kommt in den roten ZIF-Verbinder.

- Zum Öffnen der Verriegelung des ZIF-Verbinder die weisse Lasche an den Enden fassen und 1 mm herausziehen.
- · Das FFC ohne Kraftaufwand rund 3 mm in den ZIF-Verbinder einführen.
- Wenn der flexible Sensorprint eingeführt ist, den ZIF-Verbinder wieder verriegeln, indem die weisse Lasche in Richtung Printplatte geschoben wird.

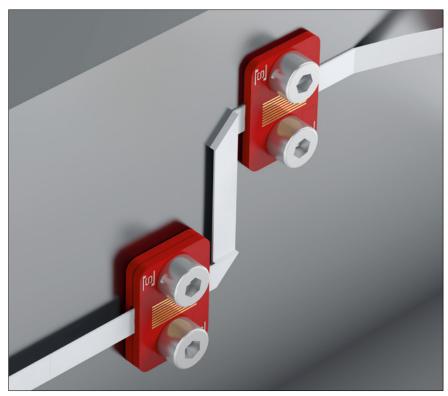


Beachten Sie dabei, dass sich die Kontaktflächen des flexiblen Sensorprints und des FFC auf der unteren Seite befinden (zum Adapterboard hin gerichtet), damit Kontakt besteht.

4.6.3 Konstruktionshinweise

Minimaler Biegeradius

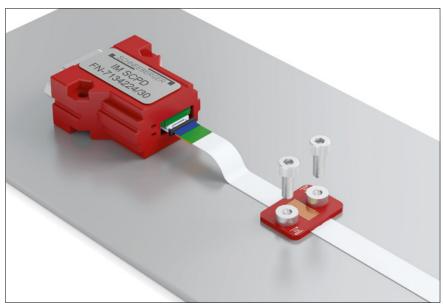
Der minimale, empfohlene Biegeradius des FFC-Kabels für dynamische Belastung beträgt 10 mm.



Minimaler empfohlener Biegeradius des FFC Kabels für dynamische Belastungen (Beispiel mit MINISLIDE MSQscale)

SCHNEEBERGER

Falten des FFC-Kabels

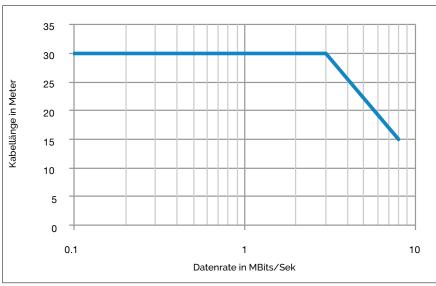

Das FFC-Kabel darf beim Verlegen einmalig gefaltet werden. Somit sind konstruktiv viele Freiheitsgrade gegeben.

Gefaltetes FFC Verlängerungskabel

Zugentlastung

- Montage von hinten mit M3-Schraube, welche in das M3-Innengewinde der Distanzhülse greift.
- Montage von vorne mit M2-Schraube, welche in ein M2-Innengewinde der Unterkonstruktion greift.

Zugentlastung des FFC Verlängerungskabels



4.7 Anschliessen eines kundenseitigen Kabels

Wenn das Schnittstellenmodul nicht direkt auf eine Elektronik aufgesteckt wird, so muss dieses über ein kundenseitiges Kabel mit der Steuerung verbunden werden.

4.7.1 Empfehlungen zum kundenseitigen Kabel

- Um eine möglichst grosse Störsicherheit zu gewährleisten, wird empfohlen, ein geschirmtes Kabel zu verwenden; mit paarweise verdrillten Adern. Im Bedarfsfall sollte ein mehrfach geschirmtes Kabel verwendet werden.
- In jedem Fall muss ein geeignetes Schirmungskonzept ausgearbeitet werden.
- Der Kabelschirm darf nicht als Potentialausgleichs-Leiter verwendet werden.
- Encoder-Kabel örtlich getrennt von Leistungskabeln und nicht parallel dazu verlegen.
- Wird das Kabel in einer Schleppkette geführt, sollte ein schleppkettentaugliches Kabel verwendet werden.
- Kabel kurz halten (Die maximale Kabellänge zwischen Schnittstellenmodul und Steuerung beträgt 30 Meter).
- Im Zusammenhang mit dem Digitalen Schnittstellenmodul verringert sich die maximale Kabellänge beim Erhöhen der Geschwindigkeiten.
- Beispiel: Bei der maximalen Geschwindigkeit von 3.2 m/s (digital), beträgt die Datenrate 8 MHz. Dies entspricht einer maximalen Kabellänge von 15 Metern.

Maximale Kabellänge bei gegebener Frequenz der Ausgangssignale

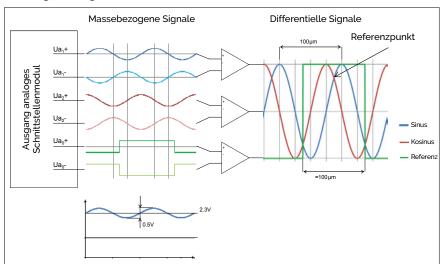
4.7.2 Beispiel für Kabel und Steckverbinder zum Schnittstellenmodul

 Kabel: Igus Chainflex, Igus-Nummer CF11.02.05.02

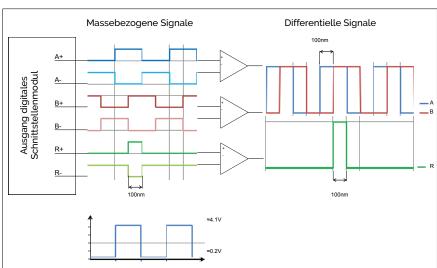
D-Sub 9 Buchse 9P:

Lötanschlüsse: TE Connectivity, TE-Nummer 3-1393483-8

Micro-Match Buchse 10P:


Gerade: TE Connectivity, TE-Nummer 8-215079-0 90° abgewinkelt: TE Connectivity, TE-Nummer 8-215460-0

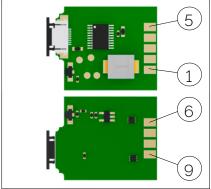
5.1 Signalübertragung


Um die Störsicherheit zu vergrössern, wird empfohlen, die Signale differentiell zu übertragen nach dem RS-422 Standard. Durch die symmetrische Übertragung mit gegenphasigen Signalen können Störungen nahezu aufgehoben werden. Die heutigen Antriebskontroller bieten diese Möglichkeit praktisch ausnahmslos.

Es wird ein Leitungspaar verwendet um die Signale (A+,B+,R+), sowie die invertierten Signale (A-,B-,R-) zu übertragen. Am Empfänger wird aus der Differenz der beiden Spannungspegel das Signal durch Differenzbildung erzeugt.

Bei der asymmetrischen Signalübertragung (single-ended) ändert die Spannung gegenüber einem Bezugspotential. Diese Signalübertragungsart ist störungs-anfälliger. Die Amplitude eines solchen Signals ist halb so gross, wie bei differentiell übertragenen Signalen.

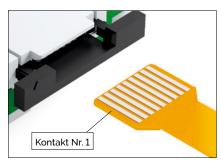
Analoge Ausgangssignale am Schnittstellenmodul. Auswertung massebezogen (single-ended) oder differentiell



Digitale Ausgangssignale am Schnittstellenmodul. Auswertung massebezogen (single-ended) oder differentiell

Busabschlusswiderstände bei RS-422 sollten 120 Ohm betragen.

5.2 Kontaktbelegung



Н	E Ect. coll ≡		(6)
F	0	11	9
(6)			(10)

Pinbelegung Micro Match Stecker am Schnitt-

Indexpin

5

Pinbelegung des flexiblen Sensorprints

5.2.1 Analoges und Digitales Schnittstellenmodul

Männlicher 9-poliger D-Sub Stecker oder Lötanschlüsse:

Pin	Analoges Signal	Digitales Signal	Beschreibung
1	Ua1-	A -	Quadratursignal
2	OV	OV	Masse
3	Ua2-	B -	Quadratursignal
4	ERR NOT	ERR NOT	Fehlersignal (Low = Fehler)
5	Ua0 -	R-	Referenzsignal
6	Ua1+	A +	Quadratursignal
7	+ 5V DC	+ 5V DC	Speisespannung
8	Ua2 +	B+	Quadratursignal
9	Ua0 +	R +	Referenzsignal

SCHNEEBERGER

Bild 1: Pinbelegung D-Sub 9 Stecker am Schnittstellenmodul

Bild 2: Pinbelegung Schnittstellenmodul mit Lötanschlüssen

Männlicher 10 poliger Micro Match Stecker:

Pin	Analoges Signal	Digitales Signal	Beschreibung
1	nc	nc	
2	Ua1+	A +	Quadratursignal
3	+ 5V DC	+ 5V DC	Speisespannung
4	Ua2 +	B+	Quadratursignal
5	Ua0 +	R +	Referenzsignal
6	Ua1 -	A -	Quadratursignal
7	OV	OV	Masse
8	Ua2 -	B -	Quadratursignal
9	ERR NOT	ERR NOT	Fehlersignal (Low = Fehler)
10	Ua0 -	R -	Referenzsignal

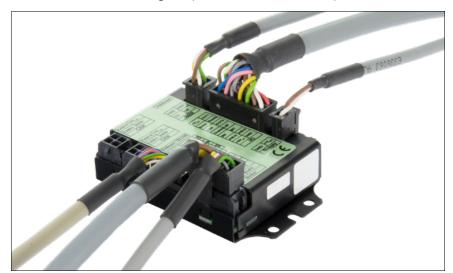
5.2.2 Sensorprint

Hinweis:

Diese Angaben sind nur für Kunden relevant, welche die Rohsignalaufbereitung selber durchführen und somit auf die Verwendung des zur Verfügung gestellten Schnittstellenmoduls verzichten.

Pin	Signal	Beschreibung
1	PZ	Rohsignal Referenz
2	GND	Masse
3	NZ	Rohsignal Referenz
4	+5V DC	Speisespannung
5	Diode	Versorgung Beleuchtung
6	PSIN	Rohsignal Sinus
7	NSIN	Rohsignal Sinus
8	PCOS	Rohsignal Cosinus
9	NCOS	Rohsignal Cosinus

SCHNEEBERGER


5.3 Steuerung

Das MINISCALE PLUS ist kompatibel mit jeder Steuerung, die einen Geberanschluss für Inkrementalsignale 1 Vss (analog Sin/Cos) oder RS-422 (digital TTL) besitzt. Das MINISCALE PLUS kann an RS-422 oder RS-485 Encoder-Eingängen angeschlossen werden.

Gängige Steuerungshersteller wie Siemens, Beckhoff, ACS, usw. bieten passende Module an.

Für einfache Anwendungen kann über ein USB Zähler (z.B von Heilig und Schwab, siehe Produktkatalog Kapitel 5.2) das MINISCALE PLUS direkt an einen PC angeschlossen werden.

Bei der Auswahl ist die maximale Eingangsfrequenz der Steuerung zu beachten. Je nach gewünschter Verfahrgeschwindigkeit und Auflösung können Frequenzen bis 8 MHz auftreten. Berechnungsbeispiele dazu finden Sie im Kapitel 6.4.

Steuerung mit Geberanschluss für 1Vss Signale oder Quadratursignale

5.3.1 Einstellungen

Für Analog Signale

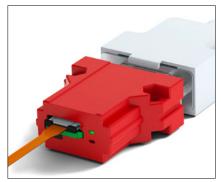
Das analoge Signal muss kundenseitig interpoliert werden, um eine entsprechende Auflösung zu erhalten. Die Signalperiode bezieht sich auf eine Strecke von 100 µm.

Beispiel: Signalperiode 100 μ m, Interpolation 250-fach, 4-fach ausgewertet ergibt 0.1 μ m Auflösung.

Für Digital Signale

Je nach gewählter Auflösung und Flankenauswertungsart ist die Schrittweite pro Inkrement im Antriebskontroller zu konfigurieren.

Die Standardauflösung beim MINISCALE PLUS beträgt 0.1 μ m. Optional kann eine Auflösung von 1 μ m oder 10 μ m bestellt werden.


Bei den Steuerungen kann meist die Flankenauswertungsart gewählt werden. Zur Auswahl steht die Vierflankenauswertung, Zweiflankenauswertung und Einflankenauswertung (Siehe Kapitel 6.3).

5.4 Funktionsprüfung

Wird das MINISCALE PLUS korrekt mit Spannung versorgt, leuchtet die grüne LED.

Schnittstellenmodul ohne flexiblen Sensorprint des MINISCALE PLUS. Die grüne und die rote LED leuchten.

Schnittstellenmodul mit korrekt angeschlossenem flexiblen Print von MINISCALE PLUS. Nur die grüne LED leuchtet.

Wenn der Wagen auf der Schiene steht und die LED Anzeige trotz eingestecktem flexiblen Sensorprint rot leuchtet, muss der Fehler mit Hilfe der Tabelle in Kapitel 9.2 "Fehlerbeschreibung" gesucht werden.

LED	Versorgung fehlt	Versorgung angeschlossen Normalbetrieb	Fehlerzustand
rot	leuchtet nicht	leuchtet nicht	leuchtet rot
grün	leuchtet nicht	leuchtet grün	leuchtet grün

Über den Fehler Ausgang ("ERR NOT") ist der Status des Schnittstellenmoduls auch elektrisch lesbar. ERR NOT ist ein Digital-Ausgang (TTL-Level), wobei ein "Low – Signal" = "Fehler anstehend" und ein "High – Signal" = "kein Fehler" bedeutet.

Das Fehlersignal muss an einen hochohmigen Eingang angeschlossen werden. Bei einer zu tiefen Eingangsimpedanz fliesst ein Strom über die rote LED und diese beginnt zu glimmen.

A

6.1 Leistungsparameter von MINISCALE PLUS

Max. Beschleunigung	300 m/s ²		
Max. Geschwindigkeit	5 m/s analog, 3.2 m/s digital		
Vorspannklassen	V1 Vorspannung O bis	0.03 C	(C = dynamische Tragzahl)
Genauigkeitsklassen	G1		
Materialien - Schiene, Wagen, Kugeln - Kugelumlenkungen	rostbeständiger, durchgel POM	närteter Stahl	
Einsatzbereiche - Temperaturbereich (1) - Vakuum - Luftfeuchtigkeit - Reinraum	-40 °C bis +80 °C (-40 °F bis +176 °F) auf Anfrage 10 % bis 70 % (nicht kondensierend) Reinraumklasse ISO 7 oder ISO 6 (gem. ISO 14644-1)		
Auflösung	TTL Ausgang	0.1 µm (3)	(optional: 1 µm / 10 µm)
Genauigkeit (2)	1000 mm	+/- 5 μm ⁽⁴⁾	
Wiederholgenauigkeit (2)	unidirektional bidirektional	+/- 0.1 μm +/- 0.2 μm	(bei Auflösung 0.1 µm)
Massverkörperung	Teilung Max. Länge Ausdehnungskoeffizient	100 µm 1000 mm 11.7 x 10-6K-1	
Versorgungsspannung	5 V DC +/- 5 %		
Stromaufnahme (typisch)	60 mA (analog) / 90 mA (digital)	
Ausgangssignal	Analog: 1 Vss (an 120 Ω) Digital: TTL entsprechend der RS 422 Norm		
Ausgangsformat	Differentielle sin/cos Analogsignale mit Referenzimpuls oder Differentielle, interpolierte Digitalsignale (A, B, R) Das Referenzsignal ist mit den Inkrementalsignalen synchronisiert		

Die Standardschmierung deckt einen Temperaturbereich von -20 °C bis +80 °C ab. Schmierungen für andere Temperaturen können bei SCHNEEBERGER angefragt werden.

6.2 Systemgenauigkeit

6.2.1 Systemgenauigkeit

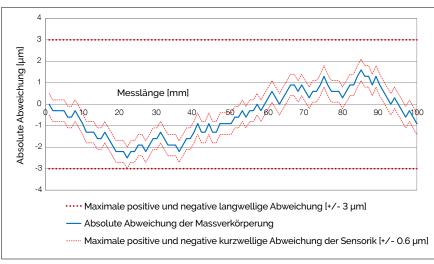
Die Systemgenauigkeit setzt sich zusammen aus dem langwelligen Fehler (Linearität der Massverkörperung) und dem kurzwelligen Fehler (z.B. Interpolationsgenauigkeit) des Abtastsystems (Sensor und Interfacemodul). Die Werte der Genauigkeit beziehen sich jeweils auf 20 °C (68 °F) Raumtemperatur.

Langwelliger Fehler

Die Linearität der Massverkörperung bezieht sich auf die gesamte Schienenläge. Auf dieser Strecke ist die Abweichung der Massverkörperung zu einem idealen Massstab immer kleiner als +/- 5 μ m.

Kurzwellliger Fehler

Alle inkrementellen Wegmesssysteme werden durch den Effekt einer periodischen Abweichung begleitet. Diese periodische Abweichung oder auch kurzwelliger Fehler genannt, entsteht durch kleine Abweichungen in der Sensorik oder der elektrischen Signalverarbeitung. Die Sinus- und Cosinus-Signale weichen dabei von der mathematisch exakten Form ab. Entstehen die periodischen Abweichungen ausschliesslich bei der Digitalisierung und Errechnung der Position, so spricht man von einem Interpolationsfehler.

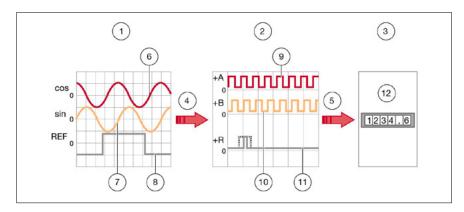

Der kurzwellige Fehler von MINISCALE PLUS liegt immer im Bereich kleiner als \pm +/- 0.6 μ m.

⁽²⁾ Die Werte gelten bei 20 °C (68 °F) Raumtemperatur.

⁽³⁾ Beachten Sie die hohen Signalfrequenzen bei hoher Auflösung und hoher Geschwindigkeit.

⁽⁴⁾ Linearitätsprotokoll auf Anfrage

Zu jedem System wird das Linearitätsprotokoll der Massverkörperung erstellt und auf Wunsch an den Kunden weitergegeben. Das Protokoll bezieht sich immer auf die Schiene (Schienennummer beachten).


Systemgenauigkeit zusammengesetzt aus dem langwelligen- und kurzwelligen Fehler

6.3 Interpolation

Bei der Anwendung in der Wegmessung bedeutet Interpolation, die Signalumwandlung von analogen Eingangssignalen in digitale Ausgangssignale mit kleinerer Signalperiode. Dies ist notwendig, da aus analogen Signalen nicht direkt Zahlen- bzw. Positionswerte generiert werden können.

Der Interpolationsfaktor bestimmt das Verhältnis der Signalperioden vom analogen Eingangssignal zum digitalen Ausgangssignal.

Am Ausgang des Interpolationsprozesses entsteht ein Quadratursignal, d.h. zwei um 90° Phasenverschobene Rechtecksignale. Die Distanz zwischen zwei Flanken des Quadratursignals wird als Auflösung bezeichnet.

Die analogen Eingangssignale (sin, cos, REF) werden zu digitalen Ausgangssignalen (+A, +B, +R) interpoliert (roter Pfeil). Invertierte Signale sind nicht dargestellt:

- Analoges Eingangssignal: sin, cos, REF
- 2. Digitales Ausgangssignal: +A, +B, +Z
- 3. Folgeelektronik)
- 4. Interpolation
- 5. Signalübertragung
- 6. Analoges Eingangssignal (cos)
- 7. Analoges Eingang Signal (sin)
- 8. Analoges Eingangs Signal (REF)
- 9. Digitales Ausgangs Signal (+A)
- 10. Digitales Ausgang Signal (+B)
- 11. Digitales Ausgangs Signal (+Z)
- 12. Messzähler, PC, Steuerung für Maschine etc.

6.4 Auswertung digitaler Signale

Die digitalen Signale (bestehend aus den zwei inkrementellen Signalen A und B sowie dem Referenzsignal R) werden an die Folgeelektronik übertragen. Dies kann ein einfaches Anzeigegerät, ein PC oder eine Maschinensteuerung sein.

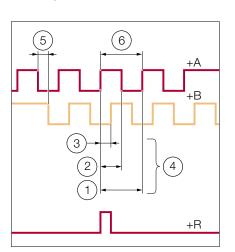
Die Folgeelektronik bestimmt aus den digitalen Signalen den Positionswert durch Zählen der Signalflanken. Die Zählrichtung ergibt sich aus der Phasenlage der beiden Signale A und B. Je nachdem wie viele Flanken ausgewertet werden spricht man hier von:

1. Einflankenauswertung:

Nur jeweils eine Flanke eines Kanals wird gezählt. Folglich entspricht ein Messschritt einer digitalen Signalperiode.

2. Zweiflankenauswertung:

Sowohl steigende als auch fallende Flanken eines Kanals werden gezählt. Folglich entspricht ein Messschritt einer halben digitalen Signalperiode.


3. Vierflankenauswertung:

Sowohl steigende als auch fallende Flanken beider Kanäle werden gezählt. Folglich entspricht ein Messschritt einer viertel digitalen Signalperiode.

1.

3.

6.

- Einflankenauswertung
- 2. Zweiflankenauswertung
 - Vierflankenauswertung
- 4. Jeweils ein Messschritt
- 5. Auflösung
 - Digitale Signalperiode

6.4.1 Auflösung

Die Auflösung beschreibt die kleinstmögliche messbare Positionsänderung des Messsystems. Dies entspricht der Distanz zwischen zwei Flanken des Quadratursignals. Die Auflösung wird durch die analoge Signalperiode, den Interpolationsfaktor und das Auswerteverfahren bestimmt.

Berechnungsbeispiel Auflösung (A)

I Interpolationsfaktor (Standard) 250
P Eingangssignalperiode 100 µm
E Auswertung (4 Flanken) Faktor 4

$$A = \frac{P}{I \cdot E} = \frac{100 \,\mu\text{m}}{250 \cdot 4} = 0.1 \,\mu\text{m}$$

6.5 Signalfrequenz

Die Signalfrequenz am Ausgang eines Schnittstellenmoduls hängt von der Verfahrgeschwindigkeit und der Auflösung (digitales Modul) bzw. der Teilungsperiode der Massverkörperung (analoges Modul) ab. Die maximale Eingangsfrequenz der Steuerung muss grösser sein als die berechnete maximale Ausgangsfrequenz des Schnittstellenmoduls, um zu garantieren, dass keine Schritte verloren gehen.

6.5.1 Berechnungsbeispiel analoges MINISCALE PLUS

v VerfahrgeschwindigkeitP Signalperiode (entspricht der Teilungsperiode der Massverkörperung)100 µm

f Frequenz $f = \frac{V}{p} = \frac{2 \text{ m/s}}{100^{\circ}10^{-6} \text{ m}} = 20'000 \text{ Hz} = 20 \text{ kHz}$

6.5.2 Berechnungsbeispiel digitales MINISCALE PLUS

Die maximale Ausgabefrequenz des digitalen Schnittstellenmoduls beträgt 8 MHz pro Kanal. Das heisst, das A-Signal und das B-Signal können je höchstens eine Frequenz von 8 MHz aufweisen. Bei einer Vierflankenauswertung der A/B-Signale ergibt sich eine Zählrate von 32 MHz, was bei einer Auflösung von 0.1 µm einer Maximalgeschwindigkeit von 3.2 m/s entspricht.

Maximale Performance digitales MINISCALE PLUS

v max. Geschwindigkeit
 A Auflösung
 Digitale Signalperiode (= 4 x Auflösung)
 0.1 μm
 0.4 μm

Berechnung max. Ausgangsfrequenz Schnittstellenmodul (Entspricht der minimal benötigten Eingangsfrequenz der Steuerung):

$$f = \frac{V}{p} = \frac{3.2 \text{ m/s}}{0.4^{\circ}10^{-6} \text{ m}} = 8'000'000 \text{ Hz} = 8 \text{ MHz}$$

Berechnung min. benötigte Zählfrequenz Steuerung (bei Vierflankenauswertung):

$$f = \frac{V}{p} = \frac{3.2 \text{ m/s}}{0.1^{\circ}10^{-6} \text{ m}} = 32'000'000 \text{ Hz} = 32 \text{ MHz}$$

Beispiel Geschwindigkeit v

Umgekehrt kann aus einer gegebenen Frequenz (z.B. limitiert durch die gewählte Steuerung) die Geschwindigkeit oder Auflösung berechnet werden.

f max. Eingangsfrequenz Steuerung 1 MHz
A Auflösung 0.1 μm
P Digitale Signalperiode (= 4 x Auflösung) 0.4 μm

 V_{max} Geschwindigkeit $V_{\text{max}} = f \cdot P = 1 \text{ MHz} \cdot 0.4 \mu \text{m} = 0.4 \text{ m/s}$

7.1 Schnittstellenmodul

Im Schnittstellenmodul werden die Sensorrohdaten in standardisierte analoge Signale (1Vss) oder standardisierte digitale Signale (TTL) umgeformt.

- Die Amplituden werden verstärkt
- · Phasenfehler zwischen Sinus und Cosinus Signal werden korrigiert
- Offset wird ausgeglichen

Im digitalen Schnittstellenmodul sitzt zudem ein Interpolator, der die analogen Signale in digitale Signale umwandelt. Siehe dazu Kapitel 6.2 "Interpolation".

7.1.1 Vergleich analog / digital Schnittstellenmodul

	Digital	Analog
Bezeichnung	D	А
Vorteile	 Signalauswertung nahe beim Sensor, dadurch störsicherer Kein zusätzlicher Interpolar nötig Nachträglicher Abgleich beim Kunden möglich 	 Kunde kann Interpolationsfaktor selber wählen Niedrigere Frequenzen Höhere Geschwindigkeit fahrbar
Nachteile	Bei hohen Geschwindig- keiten und hoher Auflösung treten sehr hohe Frequenzen auf	 Nachträglicher Abgleich beim Kunden nicht möglich. D.h. bei einem Defekt muss gesamte System (Führung und Schnittstellenmodul) ausgetauscht werden

Digital mit Gehäuse

Analog mit Gehäuse

Draufsicht: Digital ohne Gehäuse

Draufsicht: Analog ohne Gehäuse

Unteransicht: Digital ohne Gehäuse

Unteransicht: Analog ohne Gehäuse

7.2 Genauigkeitsklasse

Die Genauigkeitsklasse spezifiziert die maximal zu erwartende Messabweichung eines Systems unter den angegebenen Betriebsbedingungen. Ein Wegmesssystem mit der Genauigkeitsklasse 3 µm lässt Abweichungen von +/- 3 µm zu.

7.3 Wiederholbarkeit

Unter der Wiederholbarkeit eines Messsystems versteht man allgemein die Möglichkeit, unter gleichen Umgebungsbedingungen Ergebnisse, die ein solches System liefert, wiederholen zu können. Bei dieser Beurteilung muss der Messfehler bekannt sein und in die Betrachtung miteinfliessen.

Die Wiederholbarkeit einer Achsenposition kann mit einfachen Methoden für eine bestimmte Verfahrrichtung ermittelt werden, indem aus vielen Messungen der arithmetische Mittelwert und die Standardabweichung berechnet werden.

7.4 Referenzieren

Inkrementelle Messsysteme können nach dem Einschalten die absolute Position nicht feststellen. Aus diesem Grund wird eine weitere Spur neben der inkrementellen Spur hinzugefügt, die Referenzspur. Auf dieser Referenzspur können ein einzelner oder mehrere Referenzpunkte aufgebracht sein.

Zur Referenzierung des Systems ist eine Referenzfahrt notwendig. Typischerweise fährt dabei die Achse in eine Richtung bis zu einem mechanischen Anschlag. Von da fährt die Achse soweit zurück, bis die Referenzmarke überfahren wurde. Die Referenzmarke wird üblicherweise immer aus derselben Richtung angefahren. (unidirektional)

Die Steuerung kann dann mit der Hilfe des Referenzsignals den internen Zähler auf einen vorgegebenen Wert ändern. Beim analog Schnittstellenmodul erkennt die Steuerung eine vordefinierte Stellung der Inkrementalsignale zueinander (üblicherweise ist dies SIN = COS und beide grösser Null) sowie als Zusatzinformation REF = "hoch" als Referenzposition.

7.5 Periodische Abweichung

Alle inkrementellen Wegmesssysteme werden durch den Effekt einer periodischen Abweichung begleitet, deren Wellenlänge exakt dem Teilungsabstand oder einem Bruchteil des Teilungsabstands der Massverkörperung entspricht. Diese periodische Abweichung, auch kurzwelliger Fehler (KWF) genannt, entsteht durch kleine Abweichungen in der Sensorik oder der elektrischen Signalverarbeitung. Die Sinusund Cosinus-Signale weichen dabei von der mathematisch exakten Form ab. Je nach Ordnung (Oberwellen) teilt man die Abweichungen ein.

Periode KWF	Abweichung entsteht durch
1 Signalperiode	Offset Sinus/Cosinus
1/2 Signalperiode	Amplitude Sinus und Cosinus sind unterschiedlich
1/3 – 1/8 Signalperiode	Sensoren liefern ein Signal das grundsätzlich von der Sinusform abweicht

7.5.1 Interpolationsfehler

Entstehen die periodischen Abweichungen ausschliesslich bei der Digitalisierung und Errechnung der Position, so spricht man von einem Interpolationsfehler.

Begriffserklärungen

7.6 Komparator Fehler

Der Komparator Fehler, oder auch Abbe-Fehler genannt, ist eine systematische Abweichung, die entsteht, wenn die Achse der Längennormalen nicht mit der Achse der Wegnormalen zusammenfällt. Die Ursachen für die Abweichung sind kleinste rotatorische Bewegungen in der Achsführung, die das Messergebnis beeinflussen.

7.7 Abtastrate

Die Abtastrate beschreibt die Häufigkeit mit der das analoge Signal pro Zeitintervall abgetastet wird. Üblicherweise ist das Zeitintervall eine Sekunde, weshalb sich die Einheit der Abtastrate zu Hz ergibt. Um eine annährend vollständige Abbildung des Originalsignals sicherzustellen, sollte die Frequenz der Abtastung dem Nyquist-Shannon-Theorem folgend mindestens doppelt so gross sein, wie die des Originalsignals.

7.8 Massbezogene Signalübertragung

Bei der massbezogenen Signalübertragung, auch asymmetrische Übertragung genannt (eng. Single-ended signaling), ändern sich die Spannungen gegenüber einem Bezugspotential (elektrische Masse). Dies ist eine einfache und günstige Art der Datenübertragung, bei der pro Signal nur eine Leitung benötigt wird.

Nachteil ist die relativ grosse Störanfälligkeit. Deshalb sollt diese Art der Signalübertragung nur für kurze Distanzen und geringe Geschwindigkeiten benutzt werden.

7.9 Differentielle Signalübertragung

Bei der differentiellen Signalübertragung werden die Signale durch eine Spannungsdifferenz beschrieben, ohne sich dabei auf eine elektrische Masse zu beziehen. Anstelle eines einzigen Signalleiters wird ein Leiterpaar verwendet. Auf einem Leiter wird ein Signal übertragen, auf dem zweiten Leiter das Inverse desselben Signals. In der Steuerung wird dann die Differenz aus den beiden Signalen zum sogenannten Differenzsignal zusammengesetzt. (Beispiel: Die Signale A + und A – werden zu A). Die differenzielle Signalübertragung ist in den meisten Anwendungen die bessere Lösung, da sie störungstoleranter ist. Einkopplungen auf die Signale sind bei beiden Leitern nahezu gleich, so dass sich bei der Differenzbildung die Störung nahezu aufhebt.

Der Standard RS422 (differenziell) wurde speziell entwickelt für grössere Distanzen und höhere Datenraten in der Datenübertragung.

7.10 Fahrtrichtung

Die Fahrtrichtung lässt sich aus der Phasenlage der elektrischen Signale ablesen. Je nach Richtung eilt das eine dem anderen Signal vor oder nach.

Beim digitalen Schnittstellenmodul gilt:

Bewegt sich der Wagen in Richtung des Flexprints, ist das Signal des Kanals A gegenüber dem Kanal B um 90° voreilend. Daraus erkennt die Steuerung eine positive Fahrtrichtung, d.h. der Zähler zählt aufwärts. In der anderen Richtung ist das Signal des Kanals A gegenüber dem Kanal B um 90° nacheilend. Der Zähler zählt abwärts.

Beim analogen Schnittstellenmodul ist die Zählrichtung gerade umgekehrt.

A

8.1 Einsatzbedingungen für das MINISCALE PLUS Messsystem

Das MINISCALE PLUS ist ein offenes, optisches Messsystem. Wie bei jedem optischen Messsystem beeinträchtigt Verschmutzung die optimale Funktion des Systems. Daher ist es nicht sinnvoll, das MINISCALE PLUS in Anwendungen einzusetzen, in welchen prozessbedingt mit Staub, Spänen, Partikeln oder Flüssigkeiten zu rechnen ist. Genauso schädlich sind grobe Kratzer oder andere Beschädigungen auf der Massverkörperung.

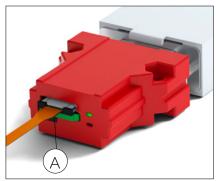
Generell gilt, dass sich MINISCALE PLUS am besten in sauberen Umgebungen bewährt. Typischerweise dort, wo auch andere Optik zum Einsatz kommt oder wo prozessbedingt eine saubere Umgebung vorhanden ist.

Dadurch unterscheidet sich das MINISCALE PLUS von den AMS Wegmesssystemen, welche bewusst für verschmutzte Umgebungen entwickelt wurden.

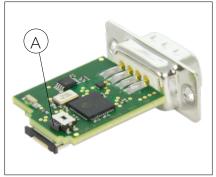
8.2 Verhalten des MINISCALE PLUS bezüglich EMV

MINISCALE PLUS inklusive dem Zubehör ist nach der Norm EN 61000 getestet. Die bestandenen Tests zeigen, dass das MINISCALE PLUS die Normforderungen erfüllt. Damit kann aber nicht ausgeschlossen werden, dass in einer spezifischen Applikation doch unerwünschte EMV-bedingte Phänomene auftreten können. Es ist in jedem Fall auf die Einhaltung der einschlägigen EMV Designpraxis zu achten.

8.3 Magnetismus und MINISCALE PLUS


Statische Magnetfelder haben keine Wirkung auf MINISCALE PLUS. Bei Wechselfeldern können je nach Kabelführung Induktionserscheinungen auftreten.

9.1 Abgleich des digitalen Schnittstellenmoduls


Dieser Abgleich wird nur bei einer nachträglichen Lieferung des digitalen Schnittstellenmoduls benötigt! Beim analogen Schnittstellenmodul ist die Nachkalibration beim Kunden nicht möglich.

Vorgang:

- MINISCALE PLUS einschalten
- · Abgleichtaste A drücken und gedrückt halten
- Führung langsam über die gesamte Hublänge bewegen (4 5 mal)
- · Abgleichtaste loslassen
- MINISCALE PLUS zurücksetzen (= ausschalten und wieder einschalten)
- Führung über die gesamte Hublänge verfahren und die LEDs kontrollieren. Es darf nur die grüne LED aufleuchten
- Beim Aufleuchten der roten LED muss der Abgleichvorgang wiederholt werden

Schnittstellenmodul mit Gehäause A Abgleichtaste

Schnittstellenmodul ohne Gehäause A Abgleichtaste

9.2 Fehlerbeschreibung

Fehlerbehebung

Fehler	Mögliche Ursache	Massnahme
Grüne LED am Schnittstellenmodul leuchtet nicht	Keine oder nicht korrekte Versorgungs- pannung am Schnittstellenmodul	Spannungsversorgung überprüfen (+5V DC)
	Falsche Pin-Belegung des kundenseitigen Kabels	Pin-Belegung überprüfen
	D-Sub 9 oder Micro Match Stecker nicht korrekt eingesteckt	Steckverbindung prüfen
	MINISCALE PLUS wurde nicht ESD konform gehandhabt und wurde dadurch beschädigt	MINISCALE PLUS ersetzen
Rote LED am Schnittstellenmodul leuchtet	Versorgungspannung am Schnittstellen- modul nicht korrekt	Spannungsversorgung überprüfen (+5V DC)
	Flexibler Sensorprint ist nicht an Schnitt- stellenmodul angeschlossen	Sensorprint anschliessen
	Flexibler Sensorprint falsch an Schnitt- stellenmodul angeschlossen. Die Kontaktfläche des flexiblen Sensorprints ist 180° verdreht	Sensorprint um 180° drehen
	Flexibler Sensorprint ist nicht vollständig in den ZIF Stecker eingeführt	Steckverbindung prüfen
	Flexibler Sensorprint ist beschädigt/ geknickt (z.B. Haarrisse an den Kontakten)	MINISCALE PLUS ersetzen
	MINISCALE PLUS wurde nicht ESD konform gehandhabt und wurde dadurch beschädigt	MINISCALE PLUS ersetzen
	Sensor-Eingangssignale ausserhalb des normalen Bereichs z.B. weil Massverkör- perung verschmutzt ist	Massverkörperung entsprechend Kapitel 3.3 reinigen und konservieren
		Beim digitalen System ist ein neu Abgleich möglich (siehe Kapitel 9:1)
Rote LED glimmt leicht	*ERR NOT* Ausgang ist an niederohmigen Eingang angeschlossen, dadurch fliesst ein kleiner Strom, der die LED zum glimmen bringt.	"ERR NOT" Ausgang an hochohmigen Eingang anschliessen oder glimmen ignorieren
Positionsinformationen stimmen nicht mit dem Verfahrweg überein	Max. Eingangsfrequenz der Kundensteuerung wird überschritten	Verfahrgeschwindigkeit oder Auflösung reduzieren
	Auflösung in Kundensteuerung falsch eingestellt	Einstellungen in Kundensteuerung anpassen
	Flankenauswertung zu tief	4-fach Flankenauswerten in Kunden- steuerung einstellen
	EMV Störeinflüsse	EMV Schutzmassnahmen ergreifen: Geschirmte Kabel verwenden mit paarweise verdrillten Adern, Motorenka- bel und Steuerungskabel getrennt verlegen, usw.
	Flexibler Sensorprint ist beschädigt/ geknickt (z.B. Haarrisse an den Kontakten)	MINISCALE PLUS ersetzen

9 Fehlerbehebung

Fehler	Mögliche Ursache	Massnahme
Analoges Schnittstellenmodul funktio- niert nicht korrekt	Nummer auf Schnittstellenmodul entspricht nicht der MINISCALE PLUS Wagennummer	Zuordnung von Schnittstellenmodul und Führung überprüfen
		System zum Abgleich an SCHNEEBER- GER retournieren
Referenzmarke wird nicht erkannt	Referenzmarke wird nicht überfahren	Verfahrweg anpassen
	Schiene ist verschmutzt	Massverkörperung entsprechend Kapitel 3.3 reinigen und konservieren
		System an SCHNEEBERGER retournieren
Inkorrekte Positionsanzeige mit dem USB Counter von Heilig und Schwab	Analog: Interpolator hat eine fixe Interpolation von 256, dadurch ergibt sich eine Auflösung auf 0.39 µm	Mit entsprechender Auflösung rechnen
	Digitaleingang hat max. Eingangsfrequenz von 500 kHz. Dadurch ist bei 0.1 µm Auflösung die Geschwindigkeit auf 0.2 m/s (Counter 026) bzw. 0.4 m/s (Counter 046) beschränkt	Geschwindigkeit oder Auflösung reduzieren
Weitere Fehler	Bedarf weiterer Abklärung	SCHNEEBERGER kontaktieren

www.schneeberger.com/contact

PROSPECTUSES

COMPANY BROCHURE
CUSTOMIZED BEARINGS
GEAR RACKS
Linear bearings and Recirculating units
MINERAL CASTING SCHNEEBERGER
MINISLIDE MSQscale

MINI-X MINIRAIL / MINISCALE PLUS / MINISLIDE MONORAIL and AMS profiled linear guideways with integrated measuring system MONORAIL and AMS application catalog POSITIONING SYSTEMS

www.schneeberger.com

